
Object-oriented
programming

Second semester

Lecture №3

Graphical User Interfaces

GUI Examples

GUI
• Graphical User Interface (GUI)

• provides user-friendly human interaction

• Building Java GUIs require use of multiple frameworks:
• JavaFX (part of JSE 8, 2014)
• An old framework would use:

• Java’s GUI component Libraries
• javax.swing.*

• Java’s Event Programming Libraries
• java.awt.event.*

• Javax.swing.event.*

• Java’s Graphics Programming Libraries
• java.awt.*

• java.awt.geom.*

JavaFX vs Swing and AWT
• Swing and AWT are replaced by the JavaFX platform for developing rich

Internet applications in JDK8.
• When Java was introduced, the GUI classes were bundled in a library known as the

Abstract Windows Toolkit (AWT).
• AWT is fine for developing simple graphical user interfaces, but not for developing

comprehensive GUI projects.
• In addition, AWT is prone to platform-specific bugs.

• The AWT user-interface components were replaced by a more robust, versatile, and
flexible library known as Swing components.
• Swing components are painted directly on canvases using Java code.
• Swing components depend less on the target platform and use less of the native GUI

resource.

• With the release of Java 8, Swing is replaced by a completely new GUI
platform: JavaFX.

Example: a mouse click on a button

•Operating System recognizes mouse click
• determines which window it was inside
• notifies that program

•Program runs in loop
• checks input buffer filled by OS
• if it finds a mouse click:

• determines which component in the program

• if the click was on a relevant component
• respond appropriately according to handler

How do GUIs work?

• They loop and respond to events

Construct GUI Components

Render GUI

Check to see if any input

Respond to user input

GUI Look vs. Behavior

• Look
• physical appearance
• custom component design
• containment
• layout management

•Behavior
• interactivity
• event programmed response

What does a GUI framework do for you?
• Provides ready made visible, interactive, customizable components

• you wouldn’t want to have to code your own window

Basic Structure of JavaFX
• javafx.application.Application is the entry point

for JavaFX applications
• JavaFX creates an application thread for running the

application start method, processing input events, and
running animation timelines.

• Override the start(Stage) method!

• javafx.stage.Stage is the top level JavaFX
container.
• The primary Stage is constructed by the platform.

• javafx.scene.Scene class is the container for all
content in a scene graph.

• javafx.scene.Node is the base class for scene
graph nodes.

My first
JavaFX App

import javafx.application.Application;
import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.scene.control.Button;

public class MyFirstJavaFX extends Application
{

@Override // Override the start method in the Application class
public void start(Stage primaryStage) {

// Create a button and place it in the scene
Button btOK = new Button("OK");
Scene scene = new Scene(btOK, 200, 250);
primaryStage.setTitle("MyJavaFX"); // Set the stage title
primaryStage.setScene(scene); // Place the scene in the stage
primaryStage.show(); // Display the stage

}
/**
* The main method is only needed for the IDE with limited
* JavaFX support. Not needed for running from the command line.
*/
public static void main(String[] args) {

launch(args);
}

}

// Multiple stages can be added beside the primaryStage
import javafx.application.Application;
import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.scene.control.Button;
public class MultipleStageDemo extends Application {

@Override // Override the start method in the Application class
public void start(Stage primaryStage) {

// Create a scene and place a button in the scene
Scene scene = new Scene(new Button("OK"), 200, 250);
primaryStage.setTitle("MyJavaFX"); // Set the stage title
primaryStage.setScene(scene); // Place the scene in the stage
primaryStage.show(); // Display the stage
Stage stage = new Stage(); // Create a new stage
stage.setTitle("Second Stage"); // Set the stage title
// Set a scene with a button in the stage
stage.setScene(new Scene(new Button("New Stage"), 100, 100));
stage.show(); // Display the stage

}
public static void main(String[] args) {

launch(args);
}

}

My second
JavaFX App

Panes, UI Controls, and Shapes

Pane
import javafx.application.Application;
import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.scene.layout.StackPane;
import javafx.scene.control.Button;
public class ButtonInPane extends Application
{

@Override // Override the start method in the Application class
public void start(Stage primaryStage) {

// Create a scene and place a button in the scene
StackPane pane = new StackPane();
pane.getChildren().add(new Button("OK"));
Scene scene = new Scene(pane, 200, 50);
primaryStage.setTitle("Button in a pane");
// Set the stage title
primaryStage.setScene(scene); // Place the scene in the stage
primaryStage.show(); // Display the stage

}
public static void main(String[] args) { launch(args); }

}

Display a Shape

• Programming Coordinate Systems start
from the left-upper corner

Circle
import javafx.application.Application;
import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.scene.layout.Pane;
import javafx.scene.shape.Circle;
import javafx.scene.paint.Color;
public class ShowCircle extends Application {

@Override // Override the start method in the Application class
public void start(Stage primaryStage) {

// Create a circle and set its properties
Circle circle = new Circle();
circle.setCenterX(100);
circle.setCenterY(100);
circle.setRadius(50);
circle.setStroke(Color.BLACK);
circle.setFill(null);
// Create a pane to hold the circle
Pane pane = new Pane();
pane.getChildren().add(circle);
// Create a scene and place it in the stage
Scene scene = new Scene(pane, 200, 200);
primaryStage.setTitle("ShowCircle"); // Set the stage title
primaryStage.setScene(scene); // Place the scene in the stage
primaryStage.show(); // Display the stage

}
/** * The main method is only needed for the IDE with limited
* JavaFX support. Not needed for running from the command line.
*/
public static void main(String[] args) { launch(args); }

}

Binding Properties
• JavaFX introduces a new concept called binding property that enables

a target object to be bound to a source object.
• If the value in the source object changes, the target property is also changed

automatically.

• The target object is simply called a binding object or a binding property.

• Resizing the window in the previous example would cover the object:

Binding

import javafx.application.Application;
import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.scene.layout.Pane;
import javafx.scene.shape.Circle;
import javafx.scene.paint.Color;
public class ShowCircleCentered extends Application {

@Override // Override the start method in the Application class
public void start(Stage primaryStage) {

// Create a pane to hold the circle
Pane pane = new Pane();
// Create a circle and set its properties
Circle circle = new Circle();
circle.centerXProperty().bind(pane.widthProperty().divide(2));
circle.centerYProperty().bind(pane.heightProperty().divide(2));
circle.setRadius(50);
circle.setStroke(Color.BLACK);
circle.setFill(Color.WHITE);
pane.getChildren().add(circle); // Add circle to the pane
// Create a scene and place it in the stage
Scene scene = new Scene(pane, 200, 200);
primaryStage.setTitle("ShowCircleCentered"); // Set the stage title
primaryStage.setScene(scene); // Place the scene in the stage
primaryStage.show(); // Display the stage

}
/**
* The main method is only needed for the IDE with limited
* JavaFX support. Not needed for running from the command line.
*/
public static void main(String[] args) {launch(args); }

}

JavaFX Beans and Binding
• Changes made to one object will automatically be reflected in

another object
• A graphical user interface automatically keeps its display synchronized with

the application's underlying data: a binding observes its list of dependencies
for changes, and then updates itself automatically after a change has been
detected.

import javafx.beans.property.DoubleProperty;
import javafx.beans.property.SimpleDoubleProperty;

public class BindingDemo {
public static void main(String[] args) {

DoubleProperty d1 = new SimpleDoubleProperty(1);
DoubleProperty d2 = new SimpleDoubleProperty(2);
d1.bind(d2);
System.out.println("d1 is " + d1.getValue() + " and d2 is " + d2.getValue());
d2.setValue(70.2);
System.out.println("d1 is " + d1.getValue() + " and d2 is " + d2.getValue());

}
}

Output:
d1 is 2.0 and d2 is 2.0
d1 is 70.2 and d2 is 70.2

