Object-oriented
programming

Second semester
Lecture No3

Graphical User Interfaces

GUI Examples

H s Bookl - Excel
FILE HOME INSERT PAGE LAYOUT FORMULAS DATA REVIEW
“ - - j—
D‘}E’C”t Calibri Ju Ay =E=E 8 -
pacte T2 COPY
aste - | H . A === &5
- ~ Format Painter B I U = O A === ==
Clipboard T Font P Alignme
Al - Je
A E C D E F G H

]

FSN PR R S I

Caienda
[]
| ' .‘

f Contacts

e i

Internet Store

!h/

H
‘I
AL

Maps SkyDrive

"o

Music

~N]

Games

Messaging

Video

Camera

ol

Finance

GUI

e Graphical User Interface (GUI)

» provides user-friendly human interaction

* Building Java GUIs require use of multiple frameworks:
e JavaFX (part of JSE 8, 2014)

* An old framework would use:

* Java’s GUI component Libraries
e javax.swing.*

* Java’s Event Programming Libraries
* java.awt.event.*
* Javax.swing.event.*

* Java’s Graphics Programming Libraries
* java.awt.*
* java.awt.geom.*

JavaFX vs Swing and AWT

* Swing and AWT are replaced by the JavaFX platform for developing rich
Internet applications in JDKS.
* When Java was introduced, the GUI classes were bundled in a library known as the
Abstract Windows Toolkit (AWT).

 AWT is fine for developing simple graphical user interfaces, but not for developing
comprehensive GUI projects.

* In addition, AWT is prone to platform-specific bugs.

 The AWT user-interface components were replaced by a more robust, versatile, and
flexible library known as Swing components.

* Swing components are painted directly on canvases using Java code.

* Swing components depend less on the target platform and use less of the native GUI
resource.

* With the release of Java 8, Swing is replaced by a completely new GUI
platform: JavaFX.

Example: a mouse click on a button

* Operating System recognizes mouse click
* determines which window it was inside
* notifies that program

* Program runs in loop
* checks input buffer filled by OS

e if it finds a mouse click:
e determines which component in the program

e if the click was on a relevant component
* respond appropriately according to handler

How do GUIs work?

)

Construct GUI Components

e

Render GUI * They loop and respond to events

e

Check to see if any input

e

Respond to user input

GUI Look vs. Behavior

* Look
* physical appearance
e custom component design
* containment
* layout management

* Behavior
* interactivity
* event programmed response

What does a GUI framework do for you?

* Provides ready made visible, interactive, customizable components

e you wouldn’t want to have to code your own window

5’ JavaFX Application (Java Window) — O

Basic Structure of JavaFX

* javafx.application.Application is the entry point
for JavaFX applications

* JavaFX creates an application thread for running the
application start method, processing input events, and
running animation timelines.

e Override the start(Stage) method!

* javafx.stage.Stage is the top level JavaFX
container.

 The primary Stage is constructed by the platform.

* javafx.scene.Scene class is the container for all
content in a scene graph.

* javafx.scene.Node is the base class for scene
graph nodes.

<€— Stage

Scene

Button

import javafx.application.Application;

I\/l y fl rSt import javafx.stage.Stage;

import javafx.scene.Scene;
_J ava FX Ap p import javafx.scene.control.Button;

public class MyFirstlavaFX extends Application

{
_ol x| @Override // Override the start method in the Application class
r 1 public void start(Stage primaryStage) {
// Create a button and place it in the scene
Button btOK = new Button("OK");
Scene scene = new Scene(btOK, 200, 250);
primaryStage.setTitle("MylavaFX"); // Set the stage title
primaryStage.setScene(scene); // Place the scene in the stage
= primaryStage.show(); // Display the stage
}
/**

* The main method is only needed for the IDE with limited
* JavaFX support. Not needed for running from the command line.

*/

public static void main(String[] args) {
launch(args);

}

My second
JavaFX App

1ol x]
oK
‘ EE (ol
MNew Stage

// Multiple stages can be added beside the primaryStage
import javafx.application.Application;
import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.scene.control.Button;
public class MultipleStageDemo extends Application {
@Override // Override the start method in the Application class
public void start(Stage primaryStage) {
// Create a scene and place a button in the scene
Scene scene = new Scene(new Button("OK"), 200, 250);
primaryStage.setTitle("MylavaFX"); // Set the stage title
primaryStage.setScene(scene); // Place the scene in the stage
primaryStage.show(); // Display the stage
Stage stage = new Stage(); // Create a new stage
stage.setTitle("Second Stage"); // Set the stage title
// Set a scene with a button in the stage
stage.setScene(new Scene(new Button("New Stage"), 100, 100));
stage.show(); // Display the stage

}

public static void main(String[] args) {
launch(args);

}

Panes, Ul Controls, and Shapes

Shapes such as Line, Circle,

= Stage — Shape Ellipse. Rectangle, Path,
Stag : s
Stage Polygon, Polyline, and Text are
~—— Scene subclasses of Shape.
|
- Parent ; : : :
(Pane, Control) | — ImageView | py displaying an image.
dIne,
Scene I Ul I h as Label
‘1 controls such as Label,
- Nodes — Control ; .
TextField, Button, CheckBox,
: RadioButton, and TextArea are
_ Node m_ subclasses of Control.

Z"‘}‘ — FlowPane

R |:] . GridPane

— BorderPane

— Pane N—_ HBox

— VBox

— StackPane

import javafx.application.Application;
Pa n e import javafx.stage.Stage;
import javafx.scene.Scene;
import javafx.scene.layout.StackPane;
import javafx.scene.control.Button;
public class ButtonlnPane extends Application
{
@Override // Override the start method in the Application class
public void start(Stage primaryStage) {
// Create a scene and place a button in the scene
=10] x| StackPane pane = new StackPane();
L pane.getChildren().add(new Button("OK"));
| OK | Scene scene = new Scene(pane, 200, 50);
primaryStage.setTitle("Button in a pane");

// Set the stage title
primaryStage.setScene(scene); // Place the scene in the stage
primaryStage.show(); // Display the stage

}
public static void main(String[] args) { launch(args); }

Display a Shape

¥ Axis

Conventional
Coordinate
* Programming Coordinate Systems start System
from the left-upper corner
: >
(0, 0) | ¥ Axis
|
Y (%, ¥)
Java
Coordinate
Y Axis System

(0, 0}

¥ Axis

Circle

=101 %]

import javafx.application.Application;

import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.layout.Pane;

import javafx.scene.shape.Circle;

import javafx.scene.paint.Color;

public class ShowCircle extends Application {
@Override // Override the start method in the Application class
public void start(Stage primaryStage) {

}

// Create a circle and set its properties

Circle circle = new Circle();

circle.setCenterX(100);

circle.setCenterY(100);

circle.setRadius(50);

circle.setStroke(Color.BLACK);

circle.setFill(null);

// Create a pane to hold the circle

Pane pane = new Pane();

pane.getChildren().add(circle);

// Create a scene and place it in the stage

Scene scene = new Scene(pane, 200, 200);
primaryStage.setTitle("ShowCircle"); // Set the stage title
primaryStage.setScene(scene); // Place the scene in the stage
primaryStage.show(); // Display the stage

/** * The main method is only needed for the IDE with limited
* JavaFX support. Not needed for running from the command line.

*/

public static void main(String[] args) { launch(args); }

Binding Properties

* JavaFX introduces a new concept called binding property that enables
a target object to be bound to a source object.

* If the value in the source object changes, the target property is also changed
automatically.

* The target object is simply called a binding object or a binding property.
* Resizing the window in the previous example would cover the object:

' ShowCircle — O

~

Binding

=10l x|

import javafx.application.Application;

import javafx.stage.Stage;

import javafx.scene.Scene;

import javafx.scene.layout.Pane;

import javafx.scene.shape.Circle;

import javafx.scene.paint.Color;

public class ShowCircleCentered extends Application {
@Override // Override the start method in the Application class
public void start(Stage primaryStage) {

}

/**

// Create a pane to hold the circle

Pane pane = new Pane();

// Create a circle and set its properties

Circle circle = new Circle();
circle.centerXProperty().bind(pane.widthProperty().divide(2));
circle.centerYProperty().bind(pane.heightProperty().divide(2));
circle.setRadius(50);

circle.setStroke(Color.BLACK);

circle.setFill(ColorWHITE);

pane.getChildren().add(circle); // Add circle to the pane

// Create a scene and place it in the stage

Scene scene = new Scene(pane, 200, 200);
primaryStage.setTitle("ShowCircleCentered"); // Set the stage title
primaryStage.setScene(scene); // Place the scene in the stage
primaryStage.show(); // Display the stage

* The main method is only needed for the IDE with limited
* JavaFX support. Not needed for running from the command line.

*/

public static void main(String[] args) {launch(args); }

JavaFX Beans and Binding

* Changes made to one object will automatically be reflected in
another object

* A graphical user interface automatically keeps its display synchronized with
the application's underlying data: a binding observes its list of dependencies
for changes, and then updates itself automatically after a change has been

detected.

import javafx.beans.property.DoubleProperty;
import javafx.beans.property.SimpleDoubleProperty;
public class BindingDemo {
public static void main(String[] args) {
DoubleProperty d1 = new SimpleDoubleProperty(1);
DoubleProperty d2 = new SimpleDoubleProperty(2);
d1.bind(d2);
System.out.printin("d1 is " + d1.getValue() + " and d2 is " + d2.getValue());
d2.setValue(70.2);
System.out.printin("d1 is " + d1.getValue() + " and d2 is " + d2.getValue());

