
Object-oriented 
programming

Second semester

Lecture №1

Total Recall, SOLID principles of OOP
PhD, Alexander Vlasov



Total Recall, key words

• Contract

• Modularity

• Typing

• Concurrency

• Persistence 



S.O.L.I.D



Single Responsibility Principle (SRP)

• The Single Responsibility principle states that every module, class, or 
function should have responsibility over a single part of the 
functionality provided by the software, and that responsibility should 
be entirely encapsulated by the class, module or function.

•A class should have only one reason to change
• This means that every class should have a single responsibility or 

single job or single purpose.



Single Responsibility Principle (SRP)

Wrong approach

SRP approach



Open/Closed Principle (OCP)

• The Open/Closed principle states that you should be able to extend a 
class behavior, without modifying it, that is we can extend the 
behavior of software entity without touching the source code of the 
entity.

•Software entities … should be open for 
extension, but closed for modification

• Open-Closed principle can be achieved using abstraction and 
inheritance.



Liskov’s Substitution Principle (LSP)

• The Liskov’s Substitution principle ensures that any class that is the 
child of a parent class should be usable in place of its parent without 
any unexpected behaviour.

•Derived or child classes must be substitutable 
for their base or parent classes

• Liskov’s notion of a behavioural subtype defines a notion of 
substitutability for objects; that is, if S is a subtype of T, then objects 
of type T in a program may be replaced with objects of type S without 
altering any of the desirable properties of that program.



Interface Segregation Principle (ISP)

• The Interface Segregation principle states that no client should be 
forced to depend on methods it does not use. Interfaces that are very 
large should be splitted into smaller and more specific ones so that 
clients will only have to know about the methods that are of interest 
to them.

•Objects in a program should be replaceable 
with instances of their subtypes without 
altering the correctness of that program

• You should prefer many client interfaces rather than one general 
interface and each interface should have a specific responsibility.



Dependency Inversion Principle (DIP)

• The Dependency Inversion principle states that high-level modules, which 
provide complex logic, should be easily reusable and unaffected by changes 
in low-level modules, which provide utility features.

•High-level modules should not depend on low-level 
modules. Both should depend on abstractions (e.g. 
interfaces).
•Abstractions should not depend on details. Details 

(concrete implementations) should depend on 
abstractions.

• The main motive of this principle is decoupling the dependencies so if class 
A changes the class B doesn’t need to care or know about the changes.



Dependency Inversion Principle (DIP)

Wrong approach

DIP approach


