
Object-oriented
programming

Lecture №6

String, Collections

PhD, Alexander Vlasov

Question?

• Contract

• Object

• Class

• Abstraction

• Encapsulation

• Hierarchy

• Modularity

Strings

• string: An object storing a sequence of text characters.
• Unlike most other objects, a String is not created with new.

String name = "text";
String name = expression;

• Examples:

String name = "Marla Singer";

int x = 3;
int y = 5;
String point = "(" + x + ", " + y + ")";

Indexes

• Characters of a string are numbered with 0-based indexes:

String name = "P. Diddy";

• The first character's index is always 0

• The last character's index is 1 less than the string's length

• The individual characters are values of type char (seen later)

index 0 1 2 3 4 5 6 7

char P . D i d d y

String methods

• These methods are called using the dot notation:

String gangsta = "Dr. Dre";
System.out.println(gangsta.length()); // 7

Method name Description

indexOf(str) index where the start of the given string
appears in this string (-1 if it is not there)

length() number of characters in this string

substring(index1, index2)

or

substring(index1)

the characters in this string from index1
(inclusive) to index2 (exclusive);

if index2 omitted, grabs till end of string

toLowerCase() a new string with all lowercase letters

toUpperCase() a new string with all uppercase letters

String method examples

// index 012345678901
String s1 = "Stuart Reges";
String s2 = "Marty Stepp";
System.out.println(s1.length()); // 12
System.out.println(s1.indexOf("e")); // 8
System.out.println(s1.substring(7, 10)) // "Reg"

String s3 = s2.substring(2, 8);
System.out.println(s3.toLowerCase()); // "rty st"

• Given the following string:

// index 0123456789012345678901
String book = "Building Java Programs";

• How would you extract the word "Java" ?
• How would you extract the first word from any string?

Modifying strings

• Methods like substring, toLowerCase, etc. create/return
a new string, rather than modifying the current string.

String s = "lil bow wow";

s.toUpperCase();

System.out.println(s); // lil bow wow

• To modify a variable, you must reassign it:

String s = "lil bow wow";

s = s.toUpperCase();

System.out.println(s); // LIL BOW WOW

Strings as parameters
public class StringParameters {

public static void main(String[] args) {

sayHello("Marty");

String teacher = "Helene";

sayHello(teacher);

}

public static void sayHello(String name) {

System.out.println("Welcome, " + name);

}

}

Output:
Welcome, Marty

Welcome, Helene

Strings as user input

• Scanner's next method reads a word of input as a String.
Scanner console = new Scanner(System.in);
System.out.print("What is your name? ");
String name = console.next();
name = name.toUpperCase();
System.out.println(name + " has " + name.length() +

" letters and starts with " + name.substring(0, 1));

Output:
What is your name? Madonna

MADONNA has 7 letters and starts with M

• The nextLine method reads a line of input as a String.

System.out.print("What is your address? ");

String address = console.nextLine();

Comparing strings

• Relational operators such as < and == fail on objects.
Scanner console = new Scanner(System.in);

System.out.print("What is your name? ");

String name = console.next();

if (name == "Barney") {

System.out.println("I love you, you love me,");

System.out.println("We're a happy family!");

}

• This code will compile, but it will not print the song.

• == compares objects by references, so it often gives false even when two
Strings have the same letters.

The equals method

• Objects are compared using a method named equals.

Scanner console = new Scanner(System.in);

System.out.print("What is your name? ");

String name = console.next();

if (name.equals("Barney")) {

System.out.println("I love you, you love me,");

System.out.println("We're a happy family!");

}

• Technically this is a method that returns a value of type boolean,
the type used in logical tests.

String test methods

String name = console.next();

if (name.startsWith("Dr.")) {

System.out.println("Are you single?");

} else if (name.equalsIgnoreCase("LUMBERG")) {

System.out.println("I need your TPS reports.");

}

Method Description

equals(str) whether two strings contain the same characters

equalsIgnoreCase(str) whether two strings contain the same characters,
ignoring upper vs. lower case

startsWith(str) whether one contains other's characters at start

endsWith(str) whether one contains other's characters at end

contains(str) whether the given string is found within this one

Type char

• char : A primitive type representing single characters.
• Each character inside a String is stored as a char value.
• Literal char values are surrounded with apostrophe

(single-quote) marks, such as 'a‘, '4‘, '\n‘, '\'‘, '\t‘, '\\'

• It is legal to have variables, parameters, returns of type char

char letter = 'S';
System.out.println(letter); // S

• char values can be concatenated with strings.

char initial = 'P';
System.out.println(initial + " Diddy"); // P Diddy

The charAt method
• The chars in a String can be accessed using the charAt method.

String food = "cookie";
char firstLetter = food.charAt(0); // 'c'

System.out.println(firstLetter + " is for " + food);
System.out.println("That's good enough for me!");

• You can use a for loop to print or examine each character.

String major = "CSE";
for (int i = 0; i < major.length(); i++) {

char c = major.charAt(i);
System.out.println(c);

}

Output:
C

S

E

char vs. int

• All char values are assigned numbers internally by the computer,
called ASCII values.

• Examples:
'A' is 65, 'B' is 66, ' ' is 32
'a' is 97, 'b' is 98, '*' is 42

• Mixing char and int causes automatic conversion to int.
'a' + 10 is 107, 'A' + 'A' is 130

• To convert an int into the equivalent char, type-cast it.
(char) ('a' + 2) is 'c'

char vs. String

• "h" is a String
'h' is a char (the two behave differently)

• String is an object; it contains methods
String s = "h";
s = s.toUpperCase(); // 'H'
int len = s.length(); // 1
char first = s.charAt(0); // 'H'

• char is primitive; you can't call methods on it

char c = 'h';
c = c.toUpperCase(); // ERROR: "cannot be dereferenced"

• What is s + 1 ? What is c + 1 ?

• What is s + s ? What is c + c ?

Comparing char values

• You can compare char values with relational operators:
'a' < 'b' and 'X' == 'X' and 'Q' != 'q'

• An example that prints the alphabet:

for (char c = 'a'; c <= 'z'; c++) {
System.out.print(c);

}

• You can test the value of a string's character:

String word = console.next();
if (word.charAt(word.length() - 1) == 's') {

System.out.println(word + " is plural.");
}

Java Collections Framework

1. When you need to organize multiple objects in your
program, you can place them into a collection

2. The Array class that was introduced later is one of
many collection classes that the standard Java library
supplies

3. Each interface type is implemented by one or more
classes

A collection groups together

elements and allows them to be

accessed and retrieved later

Collections Framework Diagram

• Each collection class implements an interface from a
hierarchy

• Each class is designed for a
specific type of storage

Collections Framework Diagram

Limitations of Arrays

• Size must be specified upon creation

• Can’t add/remove/insert elements later

• No built-in methods for searching, etc.

• Can’t print arrays without Arrays.toString (or Arrays.deepToString)

index 0 1 2 3 4 5 6 7 8 9

value 12 49 -2 26 5 17 -6 84 72 3

ArrayLists

• A variable type that represents a list of items.

• You access individual items by index.

• Store a single type of object (String, etc.)

• Resizable – can add and remove elements

• Has helpful methods for searching for items

ArrayList<String> myArrayList = new ArrayList<>();

import java.util.*;

ArrayList Methods
list.add(value); appends value at end of list

list.add(index, value); inserts given value just before the given index,
shifting subsequent values to the right

list.clear(); removes all elements of the list

list.get(index) returns the value at given index

list.indexOf(value) returns first index where given value is found in list (-
1 if not found)

list.isEmpty() returns true if the list contains no elements

list.remove(index); removes/returns value at given index, shifting
subsequent values to the left

list.remove(value); removes the first occurrence of the value, if any

list.set(index, value); replaces value at given index with given value

list.size() returns the number of elements in the list

list.toString() returns a string representation of the list
such as "[3, 42, -7, 15]"

Insert/remove

• If you insert/remove in the front or middle of a list, elements shift to fit.

list.add(2, 42);
• shift elements right to make room for the new element

list.remove(1);
• shift elements left to cover the space left by the removed element

index 0 1 2 3 4

value 3 8 9 7 5

index 0 1 2 3 4 5

value 3 8 42 9 7 5

index 0 1 2 3 4 5

value 3 8 42 9 7 5

index 0 1 2 3 4

value 3 42 9 7 5

Lists and Sets

A list is a collection that maintains

the order of its elements.

• Ordered Lists

• ArrayList
• Stores a list of items in a dynamically sized array

• LinkedList
• Allows speedy insertion and removal of items from the list

Lists and Sets

A set is an unordered collection

of unique elements.

• Unordered Sets

• HashSet
• Uses hash tables to speed up finding, adding, and removing

elements

• TreeSet
• Uses a binary tree to speed up finding, adding, and removing

elements

Stacks and Queues
• Another way of gaining efficiency in a collection is

to reduce the number of operations available
• Two examples are:

• Stack
• Remembers the order of its elements, but it does not

allow you to insert elements in every position
• You can only add and remove elements at the top

• Queue
• Add items to one end (the tail)
• Remove them from the other end (the head)
• Example: A line of people waiting for a bank teller

Maps
• A map stores keys, values, and the associations between

them
• Example:
• Barcode keys and books

• Keys
• Provides an easy way to represent an object (such as a numeric

bar code, or a Student Identification Number)

• Values
• The actual object that is associated with the key

A map keeps associations

between key and value objects.

The Collection Interface (1)
• List, Queue and Set are specialized interfaces that

inherit from the Collection interface
• All share the following commonly used methods

The Collection Interface (2)

Linked Lists
• Linked lists use references to maintain an ordered lists

of ‘nodes’
• The ‘head’ of the list references the first node
• Each node has a value and a reference to the next node

• They can be used to implement
• A List Interface
• A Queue Interface

Linked Lists Operations
• Efficient Operations

• Insertion of a node
• Find the elements it goes between
• Remap the references

• Removal of a node
• Find the element to remove
• Remap neighbor’s references

• Visiting all elements in order

• Inefficient Operations
• Random access

Each instance variable is declared just

like other variables we have used.

LinkedList: Important Methods

Generic Linked Lists

• The Collection Framework uses Generics
• Each list is declared with a type field in < > angle brackets

LinkedList<String>
LinkedList<Employee>
LinkedList<String>
LinkedList<Employee>

LinkedList<String> employeeNames = . . .;LinkedList<String> employeeNames = . . .;

List Iterators

When traversing a LinkedList, use a ListIterator
 Keeps track of where you are in the list.

Use an iterator to:
 Access elements inside a linked list

 Visit other than the first and the last nodes

LinkedList<String> employeeNames = . . .;
ListIterator<String> iter = employeeNames.listIterator()
LinkedList<String> employeeNames = . . .;
ListIterator<String> iter = employeeNames.listIterator()

Using Iterators
• Think of an iterator as pointing between two

elements (think of cursor in word processor)

 Note that the generic type for the listIterator
must match the generic type of the LinkedList

iterator.next();iterator.next();

iterator.add(“J”);iterator.add(“J”);

ListIterator<String> iter = myList.listIterator()ListIterator<String> iter = myList.listIterator()

Iterator and ListIterator Methods

• Iterators allow you to move through a list easily
• Similar to an index variable for an array

Iterators and Loops
• Iterators are often used in while and “for-each” loops

hasNext returns true if there is a next element
next returns a reference to the value of the next element

• Where is the iterator in the “for-next” loop?
• Iterators are used ‘behind the scenes’

while (iterator.hasNext())
{

String name = iterator.next();
// Do something with name

}

while (iterator.hasNext())
{

String name = iterator.next();
// Do something with name

}

for (String name : employeeNames)
{

// Do something with name
}

for (String name : employeeNames)
{

// Do something with name
}

while (iterator.hasNext())
{
String name = iterator.next();
if (condition is true for name)
{
iterator.remove();

}
}

while (iterator.hasNext())
{
String name = iterator.next();
if (condition is true for name)
{
iterator.remove();

}
}

Adding and Removing with Iterators

• Adding
• A new node is added AFTER the Iterator
• The Iterator is moved past the new node

• Removing
• Removes the object that was returned with the last call to next

or previous
• It can be called only once after next or previous
• You cannot call it immediately after a call to add.(why?)

iterator.add("Juliet");iterator.add("Juliet");

If you call the remove
method improperly, it throws

an IllegalStateException.

ListDemo.java (1)
• Illustrates adding, removing and printing a list

ListDemo.java (2)

15.3 Sets
• A set is an unordered collection

• It does not support duplicate elements

• The collection does not keep track of the order in which
elements have been added

• Therefore, it can carry out its operations more efficiently than an
ordered collection

The HashSet and TreeSet classes both

implement the Set interface.

Sets

• HashSet: Stores data in a Hash Table

• TreeSet: Stores data in a Binary Tree

• Both implementations arrange the set
elements so that finding, adding, and
removing elements is efficient

Set implementations arrange the elements

so that they can locate them quickly

Hash Table Concept
• Set elements are grouped into smaller collections of

elements that share the same characteristic
• It is usually based on the result of a mathematical

calculation on the contents that results in an integer value

• In order to be stored in a hash table, elements must have a
method to compute their integer values

100

101

102

hashCode

• The method is called hashCode

• If multiple elements have the same hash code (so-called clash), they are stored in a
LinkedList

• The elements must also have an equals method for checking whether an
element equals another like:

• String, Integer, Point, Rectangle, Color, and all collection classes

Set<String> names = new HashSet<String>();Set<String> names = new HashSet<String>();

Tree Concept
• Set elements are kept in sorted order

• Nodes are not arranged in a linear sequence
but in a tree shape

• In order to use a TreeSet, it must be possible to compare the
elements and determine which one is “larger”

TreeSet
• Use TreeSet for classes that implement the
Comparable interface

• String and Integer, for example

• The nodes are arranged in a ‘tree’ fashion so that
each ‘parent’ node has two child nodes.

• The node to the left always has a ‘smaller’ value

• The node to the right always has a ‘larger’ value

Set<String> names = new TreeSet<String>();Set<String> names = new TreeSet<String>();

Iterators and Sets
• Iterators are also used when processing sets

• hasNext returns true if there is a next element
• next returns a reference to the value of the next element
• add via the iterator is not supported for TreeSet and HashSet

• Note that the elements are not visited in the order in which you
inserted them.

• They are visited in the order in which the set keeps them:
• Seemingly random order for a HashSet
• Sorted order for a TreeSet

Iterator<String> iter = names.iterator();
while (iter.hasNext())
{
String name = iter.next();
// Do something with name

}

Iterator<String> iter = names.iterator();
while (iter.hasNext())
{
String name = iter.next();
// Do something with name

}

for (String name : names)
{
// Do something with name

}

for (String name : names)
{
// Do something with name

}

Working With Sets (1)

Working With Sets (2)

SpellCheck.java (1)

SpellCheck.java (2)

Programming Tip

Set<String> words = new HashSet<String>();Set<String> words = new HashSet<String>();

• Use Interface References to Manipulate Data Structures

• It is considered good style to store a reference to a HashSet
or TreeSet in a variable of type Set.

• This way, you have to change only one line if you decide to use a
TreeSet instead.

Programming Tip

• Unfortunately the same is not true of the ArrayList, LinkedList and
List classes

• The get and set methods for random access are very inefficient (why)

• Also, if a method can operate on arbitrary collections, use the Collection
interface type for the parameter:

public static void removeLongWords(Collection<String> words)public static void removeLongWords(Collection<String> words)

Maps
• A map allows you to associate elements from a key set

with elements from a value collection.

• The HashMap and TreeMap classes both implement the Map
interface.

• Use a map to look up objects by using a key.

HashMap Examples

• Phone book: name -> phone number

• Search engine: URL -> webpage

• Dictionary: word -> definition

• Bank: account # -> balance

• Social Network: name -> profile

• Counter: text -> # occurrences

• And many more…

Maps

Map<String, Color> favoriteColors = new HashMap<String, Color>();Map<String, Color> favoriteColors = new HashMap<String, Color>();

Key ValueKey Value

The key “unlocks” the “data” (value)

A map is like a mathematical function

Mapping between two sets.

Working with Maps (Table 5)

Key Value Pairs in Maps
• Each key is associated with a value

Map<String, Color> favoriteColors = new HashMap<String, Color>();
favoriteColors.put("Juliet", Color.RED);
favoriteColors.put(“Romeo", Color.GREEN);
Color julietsFavoriteColor = favoriteColors.get("Juliet");
favoriteColors.remove("Juliet");

Map<String, Color> favoriteColors = new HashMap<String, Color>();
favoriteColors.put("Juliet", Color.RED);
favoriteColors.put(“Romeo", Color.GREEN);
Color julietsFavoriteColor = favoriteColors.get("Juliet");
favoriteColors.remove("Juliet");

Iterating through Maps
• To iterate through the map, use a keySet to get the list of

keys:

Set<String> keySet = m.keySet();
for (String key : keySet)
{
Color value = m.get(key);
System.out.println(key + "->" + value);

}

Set<String> keySet = m.keySet();
for (String key : keySet)
{
Color value = m.get(key);
System.out.println(key + "->" + value);

}

To find all values in a map,

1/ iterate through the key set and

2/ find the values that correspond to the keys.

MapDemo.java

What data structure should I use?

• Use an array if…
• Order matters for your information
• You know how many elements you will store
• You need the most efficiency

• Use an ArrayList if…
• Order matters for your information
• You do not know how many elements you will store, or need to resize
• You need to use ArrayList methods

• Use a HashMap if…
• Order doesn’t matter for your information
• You need to store an association between two types of information
• You do not know how many elements you will store, or need to resize
• You need to use HashMap methods

Algorithms for collection

• sort(List), sort(List, Comparator)

• binarySearch(List, Object), binarySearch(List, Object, Comparator)

• reverse(List)

• shuffle(List), shuffle(List,Random)

• fill(List,Object)

• copy(List, List)

• min(Collection), min(Collection, Comparator)

• max(Collection), max(Collection,Comoarator)

List<String> strList = new ArrayList<String>();
strList.add("A");
strList.add("C");
strList.add("B");
strList.add("Z");
strList.add("E");

Collections.sort(strList);
for (String str: strList) {

System.out.print(" " + str);
}

