
Object-oriented
programming

Lecture №14

Garbage Collects
PhD, Alexander Vlasov

2

The Essence

•Programming is easier if the run-time system
“garbage-collects” - makes space belonging to
unusable data available for reuse.

3

Desiderata

1. Speed - low overhead for garbage collector.

2. Little program interruption.
• Many collectors shut down the program to hunt for garbage.

3. Locality - data that is used together is placed together on pages,
cache-lines.

Desiderata (лат. — Желаемое) — вдохновенная поэма в прозе о достижении счастья в жизни.
Ее автор — американский поэт и писатель, а также адвокат Макс Эрманн.
В возрасте 40 лет он оставил бизнес, чтобы посвятить себя литературе.

4

The Model

• There is a root set of data that is a-priori
reachable.
• Example: In Java, root set = static class variables plus

variables on run-time stack.

• Reachable data : root set plus anything referenced
by something reachable.

• Question: Why doesn’t this make sense for C?
Why is it OK for Java?

5

The Model

• Things requiring space are “objects.”

• Available space is in a heap - large area managed by the run-time
system.
• Allocator finds space for new objects.

• Space for an object is a chunk.

• Garbage collector finds unusable objects, returns their space to the heap,
and maybe moves objects around in the heap.

6

A Heap

. . .

Object 1 Object 3Object 2

Free List

7

Taxonomy

Garbage Collectors

Reference-
Counters

Trace-
Based

8

Reference Counting

• The simplest (but imperfect) method is to give each
object a reference count = number of references to
this object.
• OK if objects have no internal references.

• Initially, object has one reference.

• If reference count becomes 0, object is garbage and
its space becomes available.

9

Examples

Integer i = new Integer(10);

• Integer object is created with RC = 1.

j = k; (j, k are Integer references.)
• Object referenced by j has RC--.

• Object referenced by k has RC++.

10

Transitive Effects

• If an object reaches RC=0 and is collected, the references within that
object disappear.

• Follow these references and decrement RC in the objects reached.

• That may result in more objects with RC=0, leading to recursive
collection.

11

Example: Reference Counting

Root
Object

A(1)

E(1)D(2)

B(2)

C(1)

12

Example: Reference Counting

Root
Object

A(0)

E(1)D(2)

B(2)

C(1)

13

Example: Reference Counting

Root
Object

E(1)D(2)

B(1)

C(0)

14

Example: Reference Counting

Root
Object

E(1)D(1)

B(1)
B, D, and E are
garbage, but their
reference counts
are all > 0. They
never get collected.

15

Taxonomy

Garbage Collectors

Reference-
Counters

Trace-
Based

Stop-the-World Short-Pause

Mark-and-
Sweep

Mark-and-
Compact

Basic

16

Four States of Memory Chunks

1. Free = not holding an object; available for
allocation.

2. Unreached = Holds an object, but has not yet
been reached from the root set.

3. Unscanned = Reached from the root set, but its
references not yet followed.

4. Scanned = Reached and references followed.

17

Marking

1. Assume all objects in Unreached state.

2. Start with the root set. Put them in state Unscanned.

3. while Unscanned objects remain do

examine one of these objects;

make its state be Scanned;

add all referenced objects to Unscanned
if they have not been there;

end;

18

Sweeping

• Place all objects still in the Unreached state into the Free state.

• Place all objects in Scanned state into the Unreached state.
• To prepare for the next mark-and-sweep.

19

Taxonomy

Garbage Collectors

Reference-
Counters

Trace-
Based

Stop-the-World Short-Pause

Mark-and-
Sweep

Mark-and-
Compact

Basic Baker’s

20

Baker’s Algorithm

• Problem: The basic algorithm takes time proportional to the heap
size.
• Because you must visit all objects to see if they are Unreached.

• Baker’s algorithm keeps a list of all allocated chucks of memory, as
well as the Free list.

21

Baker’s Algorithm

• Key change: In the sweep, look only at the list of
allocated chunks.

• Those that are not marked as Scanned are garbage
and are moved to the Free list.

• Those in the Scanned state are put in the
Unreached state.
• For the next collection.

22

Taxonomy

Garbage Collectors

Reference-
Counters

Trace-
Based

Stop-the-World Short-Pause

Mark-and-
Sweep

Mark-and-
Compact

Basic Baker’s Basic

23

Issue: Why Compact?

• Compact = move reachable objects to contiguous memory.

• Locality --- fewer pages or cache-lines needed to hold the active data.

• Fragmentation --- available space must be managed so there is space
to store large objects.

24

Mark-and-Compact

1. Mark reachable objects as before.

2. Maintain a table (hash?) from reached chunks
to new locations for the objects in those
chunks.
• Scan chunks from low end of heap.

• Maintain pointer free that counts how much space is
used by reached objects so far.

25

Mark-and-Compact

3. Move all reached objects to their new locations,
and also retarget all references in those objects
to the new locations.
• Use the table of new locations.

4. Retarget root references.

26

Example: Mark-and-Compact

free

27

Example: Mark-and-Compact

free

28

Example: Mark-and-Compact

free

29

Example: Mark-and-Compact

free

30

Example: Mark-and-Compact

free

31

Example: Mark-and-Compact

free

32

Example: Mark-and-Compact

free

33

Example: Mark-and-Compact

free

34

Example: Mark-and-Compact

free

35

Taxonomy

Garbage Collectors

Reference-
Counters

Trace-
Based

Stop-the-World Short-Pause

Mark-and-
Sweep

Mark-and-
Compact

Basic Baker’s Basic Cheney’s

A different Cheney, BTW, so no jokes, please.

36

Cheney’s Copying Collector

• A shotgun approach to GC.

• 2 heaps: Allocate space in one, copy to second when
first is full, then swap roles.

• Maintain table of new locations.

• As soon as an object is reached, give it the next free
chunk in the second heap.

• As you scan objects, adjust their references to point
to second heap.

37

Taxonomy

Garbage Collectors

Reference-
Counters

Trace-
Based

Stop-the-World Short-Pause

Mark-and-
Sweep

Mark-and-
Compact

Basic Baker’s Basic Cheney’s

Incremental Partial

38

Short-Pause Garbage-Collection

1. Incremental - run garbage collection in parallel with mutation
(operation of the program).

2. Partial - stop the mutation, but only briefly, to garbage collect a
part of the heap.

39

Problem With Incremental GC

• OK to mark garbage as reachable.

• Not OK to GC a reachable object.

• If a reference r within a Scanned object is mutated
to point to an Unreached object, the latter may be
garbage-collected anyway.
• Subtle point: How do you point to an Unreached

object?

40

One Solution: Write Barriers

• Intercept every write of a reference in a scanned object.

• Place the new object referred to on the Unscanned list.

• A trick: protect all pages containing Scanned objects.
• A hardware interrupt will invoke the fixup.

41

Taxonomy

Garbage Collectors

Reference-
Counters

Trace-
Based

Stop-the-World Short-Pause

Mark-and-
Sweep

Mark-and-
Compact

Basic Baker’s Basic Cheney’s

Incremental Partial

Generational

42

The Object Life-Cycle

• “Most objects die young.”
• But those that survive one GC are likely to survive many.

• Tailor GC to spend more time on regions of the heap where objects
have just been created.
• Gives a better ratio of reclaimed space per unit time.

43

Partial Garbage Collection

• We collect one part(ition) of the heap.
• The target set.

• We maintain for each partition a remembered set of those objects
outside the partition (the stable set) that refer to objects in the
target set.
• Write barriers can be used to maintain the remembered set.

44

Collecting a Partition

• To collect a part of the heap:
1. Add the remembered set for that partition to the root set.

2. Do a reachability analysis as before.

• Note the resulting Scanned set may include garbage.

45

Example: “Reachable” Garbage

The target
partition Not reached from

the root set

In the remembered set

Stable set

46

Generational Garbage Collection

• Divide the heap into partitions P0, P1,…
• Each partition holds older objects than the one before it.

• Create new objects in P0, until it fills up.

• Garbage collect P0 only, and move the reachable objects to P1.

47

Generational GC

• When P1 fills, garbage collect P0 and P1, and put the reachable
objects in P2.

• In general: When Pi fills, collect P0, P1,…,Pi and put the reachable
objects in P(i +1).

48

Taxonomy

Garbage Collectors

Reference-
Counters

Trace-
Based

Stop-the-World Short-Pause

Mark-and-
Sweep

Mark-and-
Compact

Basic Baker’s Basic Cheney’s

Incremental Partial

Generational Train

49

The Train Algorithm

• Problem with generational GC:
1. Occasional total collection (last partition).

2. Long-lived objects move many times.

• Train algorithm useful for long-lived objects.
Replaces the higher-numbered partitions in generational GC.

50

Partitions = “Cars”

Car 11Train 1

Car 2kCar 22Car 21

Car n2Car n1

Car 13Car 12

. . .Train 2

Train n

.

.

.

51

Organization of Heap

• There can be any number of trains, and each train can have any
number of cars.
• You need to decide on a policy that gives a reasonable number of each.

• New objects can be placed in last car of last train, or start a new car
or even a new train.

52

Garbage-Collection Steps

1. Collect the first car of the first train.

2. Collect the entire first train if there are no references from the root
set or other trains.
• Important: this is how we find and eliminate large, cyclic garbage

structures.

53

Remembered Sets

• Each car has a remembered set of references from later trains and
later cars of the same train.

• Important: since we only collect first cars and trains, we never need
to worry about “forward” references (to later trains or later cars of
the same train).

54

Collecting the First Car of the First Train

• Do a partial collection as before, using every other
car/train as the stable set.

• Move all Reachable objects of the first car
somewhere else.

• Get rid of the car.

55

Moving Reachable Objects

• If object o has a reference from another train, pick one such train and
move o to that train.
• Same car as reference, if possible, else make new car.

• If references only from root set or first train, move o to another car of
first train, or create new car.

56

Panic Mode

• The problem: it is possible that when collecting the first car, nothing is
garbage.

• We then have to create a new car of the first train that is essentially
the same as the old first car.

57

Panic Mode

• If that happens, we go into panic mode, which
requires that:

1. If a reference to any object in the first train is rewritten,
we make the new reference a “dummy” member of the
root set.

2. During GC, if we encounter a reference from the “root
set,” we move the referenced object to another train.

58

Panic Mode

• Subtle point: If references to the first train never mutate, eventually
all reachable objects will be sucked out of the first train, leaving cyclic
garbage.

• But perversely, the last reference to a first-train object could move
around so it is never to the first car.

