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The Essence

•Programming is easier if the run-time system 
“garbage-collects” - makes space belonging to 
unusable data available for reuse.
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Desiderata

1. Speed - low overhead for garbage collector.

2. Little program interruption.
• Many collectors shut down the program to hunt for garbage.

3. Locality - data that is used together is placed together on pages, 
cache-lines.

Desiderata (лат. — Желаемое) — вдохновенная поэма в прозе о достижении счастья в жизни. 
Ее автор — американский поэт и писатель, а также адвокат Макс Эрманн. 
В возрасте 40 лет он оставил бизнес, чтобы посвятить себя литературе.
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The Model

• There is a root set of data that is a-priori 
reachable.
• Example: In Java, root set = static class variables plus 

variables on run-time stack.

• Reachable data : root set plus anything referenced 
by something reachable.

• Question: Why doesn’t this make sense for C?  
Why is it OK for Java?
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The Model

• Things requiring space are “objects.”

• Available space is in a heap - large area managed by the run-time 
system.
• Allocator finds space for new objects.

• Space for an object is a chunk.

• Garbage collector finds unusable objects, returns their space to the heap, 
and maybe moves objects around in the heap.
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A Heap

. . .

Object 1 Object 3Object 2

Free List
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Taxonomy

Garbage Collectors

Reference-
Counters

Trace-
Based
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Reference Counting

• The simplest (but imperfect) method is to give each 
object a reference count = number of references to 
this object.
• OK if objects have no internal references.

• Initially, object has one reference.

• If reference count becomes 0, object is garbage and 
its space becomes available.
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Examples

Integer i = new Integer(10);

• Integer object is created with RC = 1.

j = k; (j, k are Integer references.)
• Object referenced by j has RC--.

• Object referenced by k has RC++.
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Transitive Effects

• If an object reaches RC=0 and is collected, the references within that 
object disappear.

• Follow these references and decrement RC in the objects reached.

• That may result in more objects with RC=0, leading to recursive 
collection.
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Example: Reference Counting

Root
Object

A(1)

E(1)D(2)

B(2)

C(1)
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Example: Reference Counting

Root
Object

A(0)

E(1)D(2)

B(2)

C(1)
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Example: Reference Counting

Root
Object

E(1)D(2)

B(1)

C(0)
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Example: Reference Counting

Root
Object

E(1)D(1)

B(1)
B, D, and E are
garbage, but their
reference counts
are all > 0.  They
never get collected.



15

Taxonomy

Garbage Collectors

Reference-
Counters

Trace-
Based

Stop-the-World Short-Pause

Mark-and-
Sweep

Mark-and-
Compact

Basic
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Four States of Memory Chunks

1. Free = not holding an object; available for 
allocation.

2. Unreached = Holds an object, but has not yet 
been reached from the root set.

3. Unscanned = Reached from the root set, but its 
references not yet followed.

4. Scanned = Reached and references followed.
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Marking

1. Assume all objects in Unreached state.

2. Start with the root set.  Put them in state Unscanned.

3. while Unscanned objects remain do

examine one of these objects;

make its state be Scanned;

add all referenced objects to Unscanned
if they have not been there;

end;
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Sweeping

• Place all objects still in the Unreached state into the Free state.

• Place all objects in Scanned state into the Unreached state.
• To prepare for the next mark-and-sweep.
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Taxonomy

Garbage Collectors

Reference-
Counters

Trace-
Based

Stop-the-World Short-Pause

Mark-and-
Sweep

Mark-and-
Compact

Basic Baker’s
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Baker’s Algorithm

• Problem: The basic algorithm takes time proportional to the heap 
size.
• Because you must visit all objects to see if they are Unreached.

• Baker’s algorithm keeps a list of all allocated chucks of memory, as 
well as the Free list.
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Baker’s Algorithm

• Key change: In the sweep, look only at the list of 
allocated chunks.

• Those that are not marked as Scanned are garbage 
and are moved to the Free list.

• Those in the Scanned state are put in the 
Unreached state.
• For the next collection.
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Taxonomy

Garbage Collectors

Reference-
Counters

Trace-
Based

Stop-the-World Short-Pause

Mark-and-
Sweep

Mark-and-
Compact

Basic Baker’s Basic
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Issue: Why Compact?

• Compact = move reachable objects to contiguous memory.

• Locality --- fewer pages or cache-lines needed to hold the active data.

• Fragmentation --- available space must be managed so there is space 
to store large objects.
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Mark-and-Compact

1. Mark reachable objects as before.

2. Maintain a table (hash?) from reached chunks 
to new locations for the objects in those 
chunks.
• Scan chunks from low end of heap.

• Maintain pointer free that counts how much space is 
used by reached objects so far.
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Mark-and-Compact

3. Move all reached objects to their new locations, 
and also retarget all references in those objects 
to the new locations.
• Use the table of new locations.

4. Retarget root references.
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Example: Mark-and-Compact

free
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Example: Mark-and-Compact

free
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Example: Mark-and-Compact

free
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Example: Mark-and-Compact

free
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Example: Mark-and-Compact

free
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Example: Mark-and-Compact

free
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Example: Mark-and-Compact

free
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Example: Mark-and-Compact

free
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Example: Mark-and-Compact

free
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Taxonomy

Garbage Collectors

Reference-
Counters

Trace-
Based

Stop-the-World Short-Pause

Mark-and-
Sweep

Mark-and-
Compact

Basic Baker’s Basic Cheney’s

A different Cheney, BTW, so no jokes, please.
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Cheney’s Copying Collector

• A shotgun approach to GC.

• 2 heaps: Allocate space in one, copy to second when 
first is full, then swap roles.

• Maintain table of new locations.

• As soon as an object is reached, give it the next free 
chunk in the second heap.

• As you scan objects, adjust their references to point 
to second heap.
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Taxonomy

Garbage Collectors

Reference-
Counters

Trace-
Based

Stop-the-World Short-Pause

Mark-and-
Sweep

Mark-and-
Compact

Basic Baker’s Basic Cheney’s

Incremental Partial
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Short-Pause Garbage-Collection

1. Incremental - run garbage collection in parallel with mutation
(operation of the program).

2. Partial - stop the mutation, but only briefly, to garbage collect a 
part of the heap.
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Problem With Incremental GC

• OK to mark garbage as reachable.

• Not OK to GC a reachable object.

• If a reference r within a Scanned object is mutated 
to point to an Unreached object, the latter may be 
garbage-collected anyway.
• Subtle point: How do you point to an Unreached

object?
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One Solution: Write Barriers

• Intercept every write of a reference in a scanned object.

• Place the new object referred to on the Unscanned list.

• A trick: protect all pages containing Scanned objects.
• A hardware interrupt will invoke the fixup. 
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Taxonomy

Garbage Collectors

Reference-
Counters

Trace-
Based

Stop-the-World Short-Pause

Mark-and-
Sweep

Mark-and-
Compact

Basic Baker’s Basic Cheney’s

Incremental Partial

Generational
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The Object Life-Cycle

• “Most objects die young.”
• But those that survive one GC are likely to survive many.

• Tailor GC to spend more time on regions of the heap where objects 
have just been created.
• Gives a better ratio of reclaimed space per unit time.
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Partial Garbage Collection

• We collect one part(ition) of the heap.
• The target set.

• We maintain for each partition a remembered set of those objects 
outside the partition (the stable set) that refer to objects in the 
target set.
• Write barriers can be used to maintain the remembered set.
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Collecting a Partition

• To collect a part of the heap:
1. Add the remembered set for that partition to the root set.

2. Do a reachability analysis as before.

• Note the resulting Scanned set may include garbage.
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Example: “Reachable” Garbage

The target
partition Not reached from

the root set

In the remembered set

Stable set
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Generational Garbage Collection

• Divide the heap into partitions P0, P1,…
• Each partition holds older objects than the one before it.

• Create new objects in P0, until it fills up.

• Garbage collect P0 only, and move the reachable objects to P1.
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Generational GC

• When P1 fills, garbage collect P0 and P1, and put the reachable 
objects in P2.

• In general:  When Pi fills, collect P0, P1,…,Pi and put the reachable 
objects in P(i +1).
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Taxonomy

Garbage Collectors

Reference-
Counters

Trace-
Based

Stop-the-World Short-Pause

Mark-and-
Sweep

Mark-and-
Compact

Basic Baker’s Basic Cheney’s

Incremental Partial

Generational Train
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The Train Algorithm

• Problem with generational GC:
1. Occasional total collection (last partition).

2. Long-lived objects move many times.

• Train algorithm useful for long-lived objects.
Replaces the higher-numbered partitions in generational GC.
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Partitions = “Cars”

Car 11Train 1

Car 2kCar 22Car 21

Car n2Car n1

Car 13Car 12

. . .Train 2

Train n

.

.

.
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Organization of Heap

• There can be any number of trains, and each train can have any 
number of cars.
• You need to decide on a policy that gives a reasonable number of each.

• New objects can be placed in last car of last train, or start a new car 
or even a new train.
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Garbage-Collection Steps

1. Collect the first car of the first train.

2. Collect the entire first train if there are no references from the root 
set or other trains.
• Important: this is how we find and eliminate large, cyclic garbage 

structures.
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Remembered Sets

• Each car has a remembered set of references from later trains and 
later cars of the same train.

• Important: since we only collect first cars and trains, we never need 
to worry about “forward” references (to later trains or later cars of 
the same train).
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Collecting the First Car of the First Train

• Do a partial collection as before, using every other 
car/train as the stable set.

• Move all Reachable objects of the first car 
somewhere else.

• Get rid of the car.
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Moving Reachable Objects

• If object o has a reference from another train, pick one such train and 
move o to that train.
• Same car as reference, if possible, else make new car.

• If references only from root set or first train, move o to another car of 
first train, or create new car.
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Panic Mode

• The problem: it is possible that when collecting the first car, nothing is 
garbage.

• We then have to create a new car of the first train that is essentially 
the same as the old first car.
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Panic Mode

• If that happens, we go into panic mode, which 
requires that:

1. If a reference to any object in the first train is rewritten, 
we make the new reference a “dummy” member of the 
root set.

2. During GC, if we encounter a reference from the “root 
set,” we move the referenced object to another train.
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Panic Mode

• Subtle point: If references to the first train never mutate, eventually 
all reachable objects will be sucked out of the first train, leaving cyclic 
garbage.

• But perversely, the last reference to a first-train object could move 
around so it is never to the first car.


