
Object-oriented
programming

Lecture №10

Multithreading / Concurrency
PhD, Alexander Vlasov

Question?

• class File

• class InputStream/OutputStream

• class Reader/Writer

• class ObjectInputStream/ObjectOutputStream

• class BufferedReader/BufferedWriter

• class IOException

• interface Serializable/Externalizable

• java.nio.*

Thread

• Thread: single sequential flow of control within a program

• Single-threaded program can handle one task at any time.

• Multitasking allows single processor to run several concurrent
threads.

• Most modern operating systems support multitasking.

3

Advantages of Multithreading

• Reactive systems – constantly monitoring

• More responsive to user input – GUI application can interrupt a time-
consuming task

• Server can handle multiple clients simultaneously

• Can take advantage of parallel processing

4

Advantages of Multithreading

• Different processes do not share memory space.

• A thread can execute concurrently with other threads within a single
process.

• All threads managed by the JVM share memory space and can
communicate with each other.

5

Threads Concept

6

Multiple

threads on

multiple

CPUs

Multiple

threads

sharing a

single CPU

Thread 3

Thread 2

Thread 1

Thread 3

Thread 2

Thread 1

Amdahl’s Law

•Slatency is the theoretical speedup of the execution of the

whole task;

•s is the speedup of the part of the task that benefits from

improved system resources;

•p is the proportion of execution time that the part

benefiting from improved resources originally occupied.

Threads in Java

Creating threads in Java:

• Extend java.lang.Thread class

OR

• Implement java.lang.Runnable interface

8

Threads in Java

Creating threads in Java:

• Extend java.lang.Thread class
• run() method must be overridden (similar to main method of sequential

program)

• run() is called when execution of the thread begins

• A thread terminates when run() returns

• start() method invokes run()

• Calling run() does not create a new thread

• Implement java.lang.Runnable interface

9

Threads in Java

Creating threads in Java:

• Extend java.lang.Thread class

• Implement java.lang.Runnable interface
• If already inheriting another class

• Single method: public void run()

• Thread class implements Runnable.

10

Thread States

11

Thread termination

A thread becomes Not Runnable when one of these events occurs:

• Its sleep method is invoked.

• The thread calls the wait method to wait for a specific condition to be
satisifed.

• The thread is blocking on I/O.

12

Creating Tasks and Threads

13

// Custom task class

public class TaskClass implements Runnable {

 ...

 public TaskClass(...) {

 ...

 }

 // Implement the run method in Runnable

 public void run() {

 // Tell system how to run custom thread

 ...

 }

 ...

}

// Client class

public class Client {

 ...

 public void someMethod() {

 ...

 // Create an instance of TaskClass

 TaskClass task = new TaskClass(...);

 // Create a thread

 Thread thread = new Thread(task);

 // Start a thread

 thread.start();

 ...

 }

 ...

}

java.lang.Runnable

TaskClass

The Thread Class

14

java.lang.Thread

+Thread()

+Thread(task: Runnable)

+start(): void

+isAlive(): boolean

+setPriority(p: int): void

+join(): void

+sleep(millis: long): void

+yield(): void

+interrupt(): void

Creates a default thread.

Creates a thread for a specified task.

Starts the thread that causes the run() method to be invoked by the JVM.

Tests whether the thread is currently running.

Sets priority p (ranging from 1 to 10) for this thread.

Waits for this thread to finish.

Puts the runnable object to sleep for a specified time in milliseconds.

Causes this thread to temporarily pause and allow other threads to execute.

Interrupts this thread.

«interface»
java.lang.Runnable

boolean isDaemon()Tests if this thread is a daemon thread.

https://docs.oracle.com/javase/7/docs/api/java/lang/Thread.htmlisDaemon()

The Static yield() Method
You can use the yield() method to temporarily release time
for other threads.

public void run() {
for (int i = 1; i <= lastNum; i++) {
System.out.print(" " + i);
Thread.yield();

}
}

Every time a number is printed, the thread is yielded.

15

The Static sleep(milliseconds) Method

The sleep(long mills) method puts the thread to sleep for the
specified time in milliseconds.

public void run() {
for (int i = 1; i <= lastNum; i++) {

System.out.print(" " + i);
try {

if (i >= 50) Thread.sleep(1);
}
catch (InterruptedException ex) {
}

}
}

Every time a number (>= 50) is printed, the thread is put to sleep for
1 millisecond.

16

The join() Method
You can use the join() method to force one thread to wait for another
thread to finish.

17

The numbers after 50 are printed after thread printA is finished.

printA.join()

-char token

+getToken

+setToken

+paintCompone

t

+mouseClicked

Thread

print100

-char token

+getToken

+setToken

+paintCompo

net

+mouseClicke

d

Wait for printA

to finish

+getToken

+setToken

+paintComponet

Thread

printA

-char token

+getToken

+setToken

+paintCompo

net

+mouseClicke

d

 printA finished

-char token

public void run() {

 Thread thread4 = new Thread(

new PrintChar('c', 40));

 thread4.start();

 try {

 for (int i = 1; i <= lastNum; i++) {

 System.out.print(" " + i);

 if (i == 50) thread4.join();

 }

 }

 catch (InterruptedException ex) {

 }

}

Thread States

18

New Ready

Thread created

Finished

Running

start()
run()

Wait for target

to finish

join()

run() returns

yield(), or

time out

interrupt()

Wait for time

out

Wait to be

notified

sleep()

wait() Target

finished

notify() or

notifyAll()

Time out

Blocked

Interrupted()

A thread can be in one of five states:

New, Ready, Running, Blocked, or

Finished.

Thread methods
isAlive()
• method used to find out the state of a thread.
• returns true: thread is in the Ready, Blocked, or Running state
• returns false: thread is new and has not started or if it is
finished.

interrupt()
f a thread is currently in the Ready or Running state, its
interrupted flag is set; if a thread is currently blocked, it is
awakened and enters the Ready state, and an
java.io.InterruptedException is thrown.

The isInterrupt() method tests whether the thread is
interrupted.

19

Thread Priority

• Each thread is assigned a default priority of
Thread.NORM_PRIORITY (constant of 5). You
can reset the priority using setPriority(int
priority).

• Some constants for priorities include
Thread.MIN_PRIORITY

Thread.MAX_PRIORITY
Thread.NORM_PRIORITY

• By default, a thread has the priority level of the
thread that created it.

20

Thread Scheduling

• An operating system’s thread scheduler determines
which thread runs next.

• Most operating systems use timeslicing for threads of
equal priority.

• Preemptive scheduling: when a thread of higher
priority enters the running state, it preempts the
current thread.

• Starvation: Higher-priority threads can postpone
(possible forever) the execution of lower-priority
threads.

21

Thread Pools

22

• Starting a new thread for each task could limit throughput and cause

poor performance.

• A thread pool is ideal to manage the number of tasks executing

concurrently.

• Executor interface for executing Runnable objects in a thread pool

•ExecutorService is a subinterface of Executor.

Shuts down the executor, but allows the tasks in the executor to

complete. Once shutdown, it cannot accept new tasks.

Shuts down the executor immediately even though there are

unfinished threads in the pool. Returns a list of unfinished

tasks.

Returns true if the executor has been shutdown.

Returns true if all tasks in the pool are terminated.

«interface»
java.util.concurrent.Executor

+execute(Runnable object): void

Executes the runnable task.

\

«interface»
java.util.concurrent.ExecutorService

+shutdown(): void

+shutdownNow(): List<Runnable>

+isShutdown(): boolean

+isTerminated(): boolean

Thread Pools
public static void main(String[] args) throws Exception {

ExecutorService es = Executors.newFixedThreadPool(5);
List<Callable<Integer>> tasks = new ArrayList<>();
class CubusTask implements Callable<Integer> {

int num;
CubusTask(int num) { this.num = num;}
@Override
public Integer call() throws Exception {

return num*num*num;
}

}
for(int j=0; j<10; j++) tasks.add(new CubusTask(j));
List<Future<Integer>> listResult = es.invokeAll(tasks);
if (!es.awaitTermination(5, TimeUnit.SECONDS))

es.shutdownNow();
for(int i=0; i<tasks.size(); i++)

System.out.println("Cube of " + i + " is " + listResult.get(i).get());
}

Thread Synchronization

24

A shared resource may be corrupted if it is

accessed simultaneously by multiple threads.

Example: two unsynchronized threads accessing

the same bank account may cause conflict.

Step balance thread[i] thread[j]

1 0 newBalance = bank.getBalance() + 1;

2 0 newBalance = bank.getBalance() + 1;

3 1 bank.setBalance(newBalance);

4 1 bank.setBalance(newBalance);

Race Condition

What, then, caused the error in the example? Here is a possible scenario:

25

• Effect: Task 1 did nothing (in Step 4 Task 2 overrides the result)

• Problem: Task 1 and Task 2 are accessing a common resource in a way that causes
conflict.

• Known as a race condition in multithreaded programs.

•A thread-safe class does not cause a race condition in the presence of multiple threads.

•The Account class is not thread-safe.

 Step balance Task 1 Task 2

1 0 newBalance = balance + 1;

2 0 newBalance = balance + 1;

3 1 balance = newBalance;

4 1 balance = newBalance;

);

synchronized

•Problem: race conditions

•Solution: give exclusive access to one thread at a time to code that
manipulates a shared object.

•Synchronization keeps other threads waiting until the object is
available.

•The synchronized keyword synchronizes the method so that only
one thread can access the method at a time.

•The critical region is the entire deposit method.

•One way to correct the problem: make Account thread-safe by
adding the synchronized keyword in deposit:

public synchronized void deposit(double amount)

26

Synchronizing Instance Methods and Static
Methods

•A synchronized method acquires a lock before it executes.

•Instance method: the lock is on the object for which it was
invoked.

•Static method: the lock is on the class.

•If one thread invokes a synchronized instance method
(respectively, static method) on an object, the lock of that
object (respectively, class) is acquired, then the method is
executed, and finally the lock is released.

•Another thread invoking the same method of that object
(respectively, class) is blocked until the lock is released.

27

Synchronizing Instance Methods and Static
Methods

With the deposit method synchronized, the preceding scenario
cannot happen. If Task 2 starts to enter the method, and Task 1 is
already in the method, Task 2 is blocked until Task 1 finishes the
method.

28

Acquire a lock on the object account

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Execute the deposit method

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Release the lock

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Task 1

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Acqurie a lock on the object account

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Execute the deposit method

-char token

+getToken

+setToken

+paintComponet

Release the lock

Task 2

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

 Wait to acquire the lock

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Synchronizing Statements
•Invoking a synchronized instance method of an object acquires a
lock on the object.
•Invoking a synchronized static method of a class acquires a lock on
the class.
•A synchronized block can be used to acquire a lock on any object,
not just this object, when executing a block of code.

synchronized (expr) {

statements;

}

•expr must evaluate to an object reference.

•If the object is already locked by another thread, the thread is
blocked until the lock is released.
•When a lock is obtained on the object, the statements in the
synchronized block are executed, and then the lock is released.

29

Synchronizing Statements vs. Methods

Any synchronized instance method can be converted into a
synchronized statement. Suppose that the following is a synchronized
instance method:

public synchronized void xMethod() {

// method body

}

This method is equivalent to

public void xMethod() {

synchronized (this) {

// method body

}

}

30

Synchronization Using Locks
•A synchronized instance method implicitly acquires a lock on the
instance before it executes the method.
•You can use locks explicitly to obtain more control for coordinating
threads.
•A lock is an instance of the Lock interface, which declares the
methods for acquiring and releasing locks.
•newCondition() method creates Condition objects, which can be
used for thread communication.

31

Same as ReentrantLock(false).

Creates a lock with the given fairness policy. When the
fairness is true, the longest-waiting thread will get the

lock. Otherwise, there is no particular access order.

«interface»
java.util.concurrent.locks.Lock

+lock(): void

+unlock(): void

+newCondition(): Condition

Acquires the lock.

Releases the lock.

Returns a new Condition instance that is bound to this

Lock instance.

java.util.concurrent.locks.ReentrantLock

+ReentrantLock()

+ReentrantLock(fair: boolean)

Fairness Policy

•ReentrantLock:concrete implementation of Lock for
creating mutually exclusive locks.
•Create a lock with the specified fairness policy.
•True fairness policies guarantee the longest-wait thread to
obtain the lock first.
•False fairness policies grant a lock to a waiting thread
without any access order.
•Programs using fair locks accessed by many threads may
have poor overall performance than those using the
default setting, but have smaller variances in times to
obtain locks and guarantee lack of starvation.

32

Cooperation Among Threads

•Conditions can be used for communication among threads.

•A thread can specify what to do under a certain condition.
•newCondition() method of Lock object.

•Condition methods:
•await() current thread waits until the condition is signaled
•signal() wakes up a waiting thread
•signalAll() wakes all waiting threads

33

«interface»

java.util.concurrent.Condition

+await(): void

+signal(): void

+signalAll(): Condition

Causes the current thread to wait until the condition is signaled.

Wakes up one waiting thread.

Wakes up all waiting threads.

Cooperation Among Threads

•Lock with a condition to synchronize operations: newDeposit

•If the balance is less than the amount to be withdrawn, the
withdraw task will wait for the newDeposit condition.
•When the deposit task adds money to the account, the task signals
the waiting withdraw task to try again.

•Interaction between the two tasks:

34

while (balance < withdrawAmount)

 newDeposit.await();

Withdraw Task

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

balance -= withdrawAmount

-char token

+getToken

+setToken

lock.unlock();

Deposit Task

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

lock.lock();

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

newDeposit.signalAll();

balance += depositAmount

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

lock.unlock();

-char token

lock.lock();

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Java’s Built-in Monitors

•Locks and conditions are new in Java 5.
•Prior to Java 5, thread communications were programmed
using object’s built-in monitors.
•Locks and conditions are more powerful and flexible than
the built-in monitor.
•A monitor is an object with mutual exclusion and
synchronization capabilities.
•Only one thread can execute a method at a time in the
monitor.
•A thread enters the monitor by acquiring a lock
(synchronized keyword on method / block) on the monitor
and exits by releasing the lock.
•A thread can wait in a monitor if the condition is not right
for it to continue executing in the monitor.
•Any object can be a monitor. An object becomes a monitor
once a thread locks it.

35

wait(), notify(), and notifyAll()

Use the wait(), notify(), and notifyAll() methods to facilitate
communication among threads.

The wait(), notify(), and notifyAll() methods must be called in a
synchronized method or a synchronized block on the calling object of
these methods. Otherwise, an IllegalMonitorStateException would
occur.

The wait() method lets the thread wait until some condition occurs.
When it occurs, you can use the notify() or notifyAll() methods to
notify the waiting threads to resume normal execution. The
notifyAll() method wakes up all waiting threads, while notify() picks
up only one thread from a waiting queue.

36

Example: Using Monitor

• The wait(), notify(), and notifyAll() methods must be called in a
synchronized method or a synchronized block on the receiving object of
these methods. Otherwise, an IllegalMonitorStateException will occur.

• When wait() is invoked, it pauses the thread and simultaneously releases
the lock on the object. When the thread is restarted after being notified,
the lock is automatically reacquired.

• The wait(), notify(), and notifyAll() methods on an object are analogous
to the await(), signal(), and signalAll() methods on a condition.

37

synchronized (anObject) {

 try {

 // Wait for the condition to become true

 while (!condition)

 anObject.wait();

 // Do something when condition is true

 }

 catch (InterruptedException ex) {

 ex.printStackTrace();

 }

}

Task 1

synchronized (anObject) {

 // When condition becomes true

 anObject.notify(); or anObject.notifyAll();

 ...

}

Task 2

resume

Case Study: Producer/Consumer

Consider the classic Consumer/Producer example. Suppose you use a buffer to
store integers. The buffer size is limited. The buffer provides the method write(int)
to add an int value to the buffer and the method read() to read and delete an int
value from the buffer. To synchronize the operations, use a lock with two
conditions: notEmpty (i.e., buffer is not empty) and notFull (i.e., buffer is not full).
When a task adds an int to the buffer, if the buffer is full, the task will wait for the
notFull condition. When a task deletes an int from the buffer, if the buffer is
empty, the task will wait for the notEmpty condition. The interaction between the
two tasks is shown .

38

while (count == CAPACITY)

 notFull.await();

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Task for adding an int

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Add an int to the buffer

-char token

+getToken

+setToken

+paintComponet

notEmpty.signal();

-char token

while (count == 0)

 notEmpty.await();

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Task for deleting an int

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Delete an int to the buffer

-char token

+getToken

+setToken

+paintComponet

notFull.signal();

-char token

Blocking Queues

introduced queues and priority queues. A blocking queue
causes a thread to block when you try to add an element
to a full queue or to remove an element from an empty
queue.

39

«interface»
java.util.concurrent.BlockingQueue<E>

+put(element: E): void

+take(): E

«interface»
java.util.Collection<E>

Inserts an element to the tail of the queue.

Waits if the queue is full.

Retrieves and removes the head of this

queue. Waits if the queue is empty.

«interface»
java.util.Queue<E>

Concrete Blocking Queues
Three concrete blocking queues ArrayBlockingQueue, LinkedBlockingQueue, and
PriorityBlockingQueue are supported in JDK 1.5. All are in the java.util.concurrent
package. ArrayBlockingQueue implements a blocking queue using an array. You
have to specify a capacity or an optional fairness to construct an
ArrayBlockingQueue. LinkedBlockingQueue implements a blocking queue using a
linked list. You may create an unbounded or bounded LinkedBlockingQueue.
PriorityBlockingQueue is a priority queue. You may create an unbounded or

bounded priority queue.

40

ArrayBlockingQueue<E>

+ArrayBlockingQueue(capacity: int)

+ArrayBlockingQueue(capacity: int,

fair: boolean)

«interface»
java.util.concurrent.BlockingQueue<E>

LinkedBlockingQueue<E>

+LinkedBlockingQueue()

+LinkedBlockingQueue(capacity: int)

PriorityBlockingQueue<E>

+PriorityBlockingQueue()

+PriorityBlockingQueue(capacity: int)

Semaphores

Semaphores can be used to restrict the number of threads that
access a shared resource. Before accessing the resource, a thread
must acquire a permit from the semaphore. After finishing with the
resource, the thread must return the permit back to the semaphore.

41

Acquire a permit from a semaphore.
Wait if the permit is not available.

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

A thread accessing a shared resource

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

Access the resource

-char token

+getToken

+setToken

+paintComponet

Release the permit to the semaphore

-char token

semaphore.acquire();

A thread accessing a shared resource

-char token

+getToken

+setToken

+paintComponet

+mouseClicked

 Access the resource

-char token

+getToken

+setToken

+paintComponet

semaphore.release();

-char token

Creating Semaphores

To create a semaphore, you have to specify the number of
permits with an optional fairness policy. A task acquires a
permit by invoking the semaphore’s acquire() method and
releases the permit by invoking the semaphore’s release()
method. Once a permit is acquired, the total number of
available permits in a semaphore is reduced by 1. Once a
permit is released, the total number of available permits in a
semaphore is increased by 1.

42

Creates a semaphore with the specified number of permits. The

fairness policy is false.

Creates a semaphore with the specified number of permits and

the fairness policy.

Acquires a permit from this semaphore. If no permit is

available, the thread is blocked until one is available.

Releases a permit back to the semaphore.

java.util.concurrent.Semaphore

+Semaphore(numberOfPermits: int)

+Semaphore(numberOfPermits: int, fair:

boolean)

+acquire(): void

+release(): void

Deadlock
•Sometimes two or more threads need to acquire the locks on several shared
objects.

•This could cause deadlock, in which each thread has the lock on one of the
objects and is waiting for the lock on the other object.

•In the figure below, the two threads wait for each other to release the in order to
get a lock, and neither can continue to run.

43

synchronized (object1) {

 // do something here

 synchronized (object2) {

 // do something here

 }

}

Thread 1

synchronized (object2) {

 // do something here

 synchronized (object1) {

 // do something here

 }

}

Thread 2

Step

1

2

3

4

5

6

Wait for Thread 2 to

release the lock on object2

Wait for Thread 1 to

release the lock on object1

Preventing Deadlock

•Deadlock can be easily avoided by resource ordering.

•With this technique, assign an order on all the objects whose locks
must be acquired and ensure that the locks are acquired in that
order.

•How does this prevent deadlock in the previous example?

44

Synchronized Collections
•The classes in the Java Collections Framework are not thread-safe.

•Their contents may be corrupted if they are accessed and updated
concurrently by multiple threads.
•You can protect the data in a collection by locking the collection or
using synchronized collections.

The Collections class provides six static methods for creating
synchronization wrappers.

45

 java.util.Collections

+synchronizedCollection(c: Collection): Collection

+synchronizedList(list: List): List

+synchronizedMap(m: Map): Map

+synchronizedSet(s: Set): Set

+synchronizedSortedMap(s: SortedMap): SortedMap

+synchronizedSortedSet(s: SortedSet): SortedSet

Returns a synchronized collection.

Returns a synchronized list from the specified list.

Returns a synchronized map from the specified map.

Returns a synchronized set from the specified set.

Returns a synchronized sorted map from the specified

sorted map.

Returns a synchronized sorted set.

Vector, Stack, and Hashtable
Invoking synchronizedCollection(Collection c) returns a new Collection
object, in which all the methods that access and update the original
collection c are synchronized. These methods are implemented using
the synchronized keyword. For example, the add method is
implemented like this:

public boolean add(E o) {
synchronized (this) { return c.add(o); }

}

The synchronized collections can be safely accessed and modified by
multiple threads concurrently.

The methods in java.util.Vector, java.util.Stack, and Hashtable are
already synchronized. These are old classes introduced in JDK 1.0. In
JDK 1.5, you should use java.util.ArrayList to replace Vector,
java.util.LinkedList to replace Stack, and java.util.Map to replace
Hashtable. If synchronization is needed, use a synchronization wrapper.

46

Fail-Fast
The synchronization wrapper classes are thread-safe, but the iterator is fail-fast.
This means that if you are using an iterator to traverse a collection while the
underlying collection is being modified by another thread, then the iterator will
immediately fail by throwing java.util.ConcurrentModificationException, which is a
subclass of RuntimeException. To avoid this error, you need to create a
synchronized collection object and acquire a lock on the object when traversing it.
For example, suppose you want to traverse a set, you have to write the code like
this:

Set hashSet = Collections.synchronizedSet(new HashSet());
synchronized (hashSet) { // Must synchronize it

Iterator iterator = hashSet.iterator();
while (iterator.hasNext()) {

System.out.println(iterator.next());
}

}

Failure to do so may result in nondeterministic behavior, such as
ConcurrentModificationException.

47

